FOD050L, FOD250L: Single Channel FOD053L: Dual Channel
 LVTTL/LVCMOS 3.3V High Speed Transistor Optocouplers

Features

- Low power consumption

■ High speed
■ Available in single channel 8-pin DIP (FOD250L), 8-pin SOIC (FOD050L) or dual channel 8-pin SOIC (FOD053L)
■ Superior CMR $-\mathrm{CM}_{\mathrm{H}}=50 \mathrm{kV} / \mu \mathrm{s}$ (typical) and $\mathrm{CM}_{\mathrm{L}}=35 \mathrm{kV} / \mu \mathrm{s}$ (typical)
■ Guaranteed performance over temperature: $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
■ U.L. recognized (File \# E90700)
■ VDE pending

Applications

- Line receivers
- Pulse transformer replacement

■ High speed logic ground isolation: LVTTL/LVCMOS

- Wide bandwidth analog coupling

Description

The FOD250L, FOD050L and FOD053L optocouplers consist of an AIGaAs LED optically coupled to a high speed photodetector transistor. These devices are specified for operation at a 3.3 V supply voltage.

A separate connection for the bias of the photodiode improves the speed by several orders of magnitude over conventional
phototransistor optocouplers by reducing the basecollector capacitance of the input transistor.
An internal noise shield provides superior common mode rejection of $\mathrm{CM}_{\mathrm{H}}=50 \mathrm{kV} / \mathrm{ms}$ (typical) and $\mathrm{CM}_{\mathrm{L}}=$ $35 \mathrm{kV} / \mathrm{ms}$ (typical).

Schematics

FOD050L, FOD250L

FOD053L

Package Outlines

Truth Table

LED	V_{O}
On	LOW
Off	HIGH

Absolute Maximum Ratings ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise specified.)
Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Parameter		Value	Units
$\mathrm{T}_{\text {STG }}$	Storage Temperature		-40 to +125	${ }^{\circ} \mathrm{C}$
ToPR	Operating Temperature		-40 to +85	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {SOL }}$	Lead Solder Temperature (Wave solder only)		260 for 10 sec	${ }^{\circ} \mathrm{C}$
EMITTER				
I_{F} (avg)	DC/Average Forward Input Current	Each Channel	25	mA
$\mathrm{I}_{\mathrm{F}}(\mathrm{pk})$	Peak Forward Input Current (50\% duty cycle, 1 ms P.W.)	Each Channel	50	mA
I_{F} (trans)	Peak Transient Input Current ($\leq 1 \mu \mathrm{~s}$ P.W., 300pps)	Each Channel	1.0	A
V_{R}	Reverse Input Voltage	Each Channel	5	V
$P_{\text {D }}$	Input Power Dissipation (No derating required up to $85^{\circ} \mathrm{C}$)	Each Channel	45	mW
DETECTOR				
I_{0} (avg)	Average Output Current	Each Channel	8	mA
I_{O} (pk)	Peak Output Current	Each Channel	16	mA
$\mathrm{V}_{\text {EBR }}$	Emitter-Base Reverse Voltage	FOD050L, FOD250L only	5	V
V_{CC}	Supply Voltage		-0.5 to 7	V
V_{O}	Output Voltage		-0.5 to 7	V
I_{B}	Base Current	FOD050L, FOD250L only	5	mA
P_{D}	Output Power Dissipation (No derating required up to $85^{\circ} \mathrm{C}$)	Each Channel	100	mW

Electrical Characteristics ($\mathrm{T}_{\mathrm{A}}=0$ to $70^{\circ} \mathrm{C}$ unless otherwise specified.)
Individual Component Characteristics

Symbol	Parameter	Test Conditions	Device	Min.	Typ.*	Max.	Unit
EMITTER							
V_{F}	Input Forward Voltage	$\mathrm{I}_{\mathrm{F}}=16 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	All		1.45	1.7	V
		$\mathrm{I}_{\mathrm{F}}=16 \mathrm{~mA}$				1.8	
B_{VR}	Input Reverse Breakdown Voltage	$\mathrm{I}_{\mathrm{R}}=10 \mu \mathrm{~A}$	All	5.0			V
DETECTOR							
IOH	Logic High Output Current	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$	All		0.001	1	$\mu \mathrm{A}$
$\mathrm{I}_{\text {CCL }}$	Logic Low Supply Current	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=16 \mathrm{~mA}, \mathrm{~V}_{\mathrm{O}}=\text { Open, } \\ & \mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \text { FOD050L } \\ & \text { FOD250L } \end{aligned}$			200	$\mu \mathrm{A}$
		$\begin{aligned} & \mathrm{I}_{\mathrm{F} 1}=\mathrm{I}_{\mathrm{F} 2}=16 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{O}}=\text { Open, } \mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V} \end{aligned}$	FOD053L			400	
$\mathrm{I}_{\mathrm{CCH}}$	Logic High Supply Current	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{O}}=\text { Open, } \\ & \mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$	FOD050L FOD250L			0.3	$\mu \mathrm{A}$
		$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{O}}=\text { Open, } \\ & \mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V} \end{aligned}$	FOD053L			10	

${ }^{* *}$ All Typicals at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Transfer Characteristics

| Symbol | Parameter | Test Conditions | Device | Min. | Typ.** | Max. | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| COUPLED | | | | | | | |
| CTR | Current Transfer Ratio ${ }^{(1)}$ | $\mathrm{I}_{\mathrm{F}}=16 \mathrm{~mA}, \mathrm{~V}_{\mathrm{O}}=0.4 \mathrm{~V}$,
 $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ | All | 15 | | 50 | $\%$ |
| $\mathrm{~V}_{\mathrm{OL}}$ | Logic Low Output
 Voltage Output Voltage | $\mathrm{I}_{\mathrm{F}}=16 \mathrm{~mA}, \mathrm{I}_{\mathrm{O}}=3 \mathrm{~mA}$,
 $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ | All | | | 0.3 | V |

*All Typicals at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Note:

1. Current Transfer Ratio is defined as a ratio of output collector current, I_{O}, to the forward LED input current, I_{F}, times 100\%.

Electrical Characteristics (Continued) ($\mathrm{T}_{\mathrm{A}}=0$ to $70^{\circ} \mathrm{C}$ unless otherwise specified.)
Switching Characteristics ($\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$)

Symbol	Parameter	Test Conditions	Device	Min.	Typ.**	Max.	Unit
$\mathrm{T}_{\mathrm{PHL}}$	Propagation Delay Time to Logic LOW	$\mathrm{R}_{\mathrm{L}}=1.9 \mathrm{k} \Omega, \mathrm{I}_{\mathrm{F}}=16 \mathrm{~mA}^{(2)} \quad 25^{\circ} \mathrm{C}$ (Fig. 10)	All			1.0	$\mu \mathrm{s}$
$\mathrm{T}_{\text {PLH }}$	Propagation Delay Time to Logic HIGH	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=1.9 \mathrm{k} \Omega, \mathrm{I}_{\mathrm{F}}=16 \mathrm{~mA}^{(2)} \quad 25^{\circ} \mathrm{C} \\ & \text { (Fig. 10) } \end{aligned}$	All			1.0	$\mu \mathrm{s}$
${ }^{\prime} \mathrm{CM}_{\mathrm{H}} \mathrm{l}$	Common Mode Transient Immunity at Logic HIGH	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CM}}=1,000 \mathrm{~V}_{\mathrm{P}-\mathrm{P}}, \\ & \mathrm{R}_{\mathrm{L}}=4.1 \mathrm{k} \Omega, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}^{(3,4)} \text { (Fig. 11) } \end{aligned}$	All	5,000	50,000		V/ $\mu \mathrm{s}$
		$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CM}}=1,000 \mathrm{~V}_{\mathrm{P}-\mathrm{P}} \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{L}}=1.9 \mathrm{k} \Omega^{(2,4)}(\text { Fig. 11 }) \end{aligned}$		5,000	50,000		V/ $/ \mathrm{s}$
$\mathrm{ICM}_{\mathrm{L}} \mathrm{l}$	Common Mode Transient Immunity at Logic LOW	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=16 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CM}}=1,000 \mathrm{~V}_{\mathrm{P}-\mathrm{P}}, \\ & \mathrm{R}_{\mathrm{L}}=4.1 \mathrm{k} \Omega . \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}^{(3,4)} \end{aligned}$ (Fig. 11)	All	5,000	35,000		V/ $\mu \mathrm{s}$
		$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=16 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CM}}=1,000 \mathrm{~V}_{\mathrm{P}-\mathrm{P},} \\ & \mathrm{R}_{\mathrm{L}}=1.9 \mathrm{k} \Omega^{(2,4)} \text { (Fig. 11) } \end{aligned}$		5,000	35,000		V/ $/ \mathrm{s}$

Isolation Characteristics

Symbol	Characteristics	Test Conditions	Device	Min.	Typ.**	Max.	Unit
$\mathrm{I}_{\text {-O }}$	Input-Output Insulation Leakage Current	Relative humidity $=45 \%$, $\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{t}=5 \mathrm{~s}, \\ & \mathrm{~V}_{\mathrm{I}-\mathrm{O}}=3000 \mathrm{VDC}^{(5)} \end{aligned}$	All			1.0	$\mu \mathrm{A}$
$\mathrm{V}_{\text {ISO }}$	Withstand Insulation Test Voltage	$\begin{aligned} & \mathrm{f}=60 \mathrm{~Hz}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \\ & \mathrm{t}=1 \mathrm{~min} . .^{(5)} \end{aligned}$	$\begin{aligned} & \text { FOD050L } \\ & \text { FOD053L } \end{aligned}$	2500			$\mathrm{V}_{\text {RMS }}$
			FOD250L	5000			
$\mathrm{R}_{\mathrm{I}-\mathrm{O}}$	Resistance (input to output)	$\mathrm{V}_{\mathrm{I}-\mathrm{O}}=500 \mathrm{VDC}^{(5)}$	All	10^{11}	10^{12}		Ω
$\mathrm{Cl}_{\text {-O }}$	Capacitance (input to output)	$\mathrm{f}=1 \mathrm{MHz}^{(5)}$	All		0.2		pF

${ }^{*}$ All Typicals at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Notes:

2. The $1.9 \mathrm{k} \Omega$ load represents 1 TTL unit load of 1.6 mA and $5.6 \mathrm{k} \Omega$ pull-up resistor.
3. The $4.1 \mathrm{k} \Omega$ load represents 1 LSTTL unit load of 0.36 mA and $6.1 \mathrm{k} \Omega$ pull-up resistor.
4. Common mode transient immunity in logic high level is the maximum tolerable (positive) $d V_{\mathrm{cm}} / \mathrm{dt}$ on the leading edge of the common mode pulse signal V_{CM}, to assure that the output will remain in a logic high state (i.e., $\mathrm{V}_{\mathrm{O}}>2.0 \mathrm{~V}$). Common mode transient immunity in logic low level is the maximum tolerable (negative) $\mathrm{dV}_{\mathrm{cm}} / \mathrm{dt}$ on the trailing edge of the common mode pulse signal, V_{CM}, to assure that the output will remain in a logic low state (i.e., $\mathrm{V}_{\mathrm{O}}<0.8 \mathrm{~V}$).
5. Device is considered a two terminal device: Pins 1, 2, 3 and 4 are shorted together and Pins 5, 6, 7 and 8 are shorted together.

Typical Performance Curves

Fig. 1 LED Forward Current vs. Forward Voltage

Fig. 3 Current Transfer Ratio vs. Input Forward Current

Fig. 5 Output Current vs. Output Voltage

Fig. 2 Current Transfer Ratio vs. Forward Current (FOD050L, FOD053L)

Fig. 4 Current Transfer Ratio vs. Ambient Temperature

Fig 6. Logic High Output Current vs. Ambient Temperature

Typical Performance Curves (Continued)

Fig. 7 Supply Current vs. Input Forward Current

Fig. 8 Propagation Delay vs. Ambient Temperature

Fig. 9 Propagation Delay vs Load Resistance

Test Circuits

Fig. 10 Switching Time Test Circuit

Fig. 11 Common Mode Immunity Test Circuit

Package Dimensions

Through Hole

Surface Mount

Note:
All dimensions are in inches (millimeters)
0.4" Lead Spacing

8-Pin DIP - Land Pattern

Ordering Information

Option	Order Entry Identifier	Description
	FOD250L	Through Hole (DIP package only)
	FOD050L	Surface Mount Lead Form (SOIC-8 package only)
S	FOD250LS	Surface Mount Lead Bend (DIP package only)
SD	FOD250LSD	Surface Mount; Tape and reel (DIP package only)
SV	Pending Approval	Surface Mount; VDE0884 (DIP package only)
SDV	Pending Approval	Surface Mount; Tape and reel, VDE0884 (1000 units per reel) (DIP package only)
T	FOD250LT	0.4" Lead Spacing (DIP package only)
TV	Pending Approval	0.4" Lead Spacing, VDE0884 (DIP package only)
R1	FOD050LR1	Tape and Reel (500 units per reel) (SOIC-8 package only)
R2	Pending Approval	VDE, Tape and Reel (500 units per reel) (SOIC-8 package only)
R2V	FOD050LR2	Tape and Reel (2500 units per reel) (SOIC-8 package only)
V	Pending Approval	VDE, Tape and Reel (2500 units per reel) (SOIC-8 package only)

Marking Information

Carrier Tape Specification

8-Pin DIP (FOD250L)

User Direction of Feed \qquad

8-Pin SOIC (FOD050L, FOD053L)

User Direction of Feed \longrightarrow

FAIRCHILD

SEMICロNロபСTロR＊

TRADEMARKS

The following includes registered and unregistered trademarks and service marks，owned by Fairchild Semiconductor and／or its global subsidiaries，and is not intended to be an exhaustive list of all such trademarks．

Build it Now $^{\text {TM }}$	FPS ${ }^{\text {TM }}$	PDP SPM ${ }^{\text {™ }}$	The Power Franchise ${ }^{\text {® }}$
CorePLUS ${ }^{\text {™ }}$	F－PFS ${ }^{\text {TM }}$	Power－SPM ${ }^{\text {™ }}$	
CorePOWER ${ }^{\text {TM }}$	FRFET ${ }^{\text {® }}$	PowerTrench ${ }^{\circledR}$	P wer
CROSSVOLT ${ }^{\text {TM }}$	Global Power Resource ${ }^{\text {SM }}$	Programmable Active Droop ${ }^{\text {TM }}$	TinyBoost ${ }^{\text {TM }}$
CTL ${ }^{\text {m }}$	Green FPS ${ }^{\text {TM }}$	QFET ${ }^{\text {® }}$	TinyBuck ${ }^{\text {TM }}$
Current Transfer Logic ${ }^{\text {TM }}$	Green FPSS ${ }^{\text {TM }}$ e－Series ${ }^{\text {™ }}$	QS ${ }^{\text {TM }}$	TinyLogic ${ }^{\text {® }}$
EcoSPARK ${ }^{\text {® }}$	GTO ${ }^{\text {™ }}$	Quiet Series ${ }^{\text {™ }}$	TINYOPTO ${ }^{\text {™ }}$
EfficentMax ${ }^{\text {TM }}$	IntelliMAX ${ }^{\text {™ }}$	RapidConfigure ${ }^{\text {TM }}$	TinyPower ${ }^{\text {TM }}$
EZSWITCH ${ }^{\text {T }}$＊	ISOPLANAR ${ }^{\text {TM }}$	Saving our world， 1 mW at a time ${ }^{\text {TM }}$	TinyPWM ${ }^{\text {™ }}$
$\mathrm{EF}^{\text {\％}}$	MegaBuck ${ }^{\text {TM }}$	SmartMax ${ }^{\text {TM }}$ SMART START ${ }^{\text {TM }}$	TinyWire ${ }^{\text {TM }}$
Γ^{\circledR}	MICROCOUPLER ${ }^{\text {TM }}$	SPM $^{\text {® }}$－${ }^{\text {S }}$	μ SerDes ${ }^{\text {™ }}$
	MicroPak ${ }^{\text {TM }}$	STEALTH ${ }^{\text {TM }}$	M
Fairchild ${ }^{\text {® }}$	MillerDrive ${ }^{\text {TM }}$	SuperFET ${ }^{\text {TM }}$	SerDes ${ }^{\text {－}}$
Fairchild Semiconductor ${ }^{\text {® }}$	MillerDrive MotionMax	SuperSOT ${ }^{\text {TM }} 3$	UHC ${ }^{\text {® }}$
FACT Quiet Series ${ }^{\text {™ }}$	Motion－SPM ${ }^{\text {TM }}$	SuperSOT ${ }^{\text {TM }}$－6	Ultra FRFET ${ }^{\text {TM }}$
$\mathrm{FACT}^{\text {® }}$	OPTOLOGIC ${ }^{\text {® }}$	SuperSOT ${ }^{\text {TM }}$－8	UniFET ${ }^{\text {TM }}$
FAST ${ }^{\text {® }}$	OPTOPLANAR ${ }^{\text {® }}$	SupreMOS ${ }^{\text {TM }}$	VCX ${ }^{\text {TM }}$
FastvCore ${ }^{\text {TM }}$	OPT	SyncFET ${ }^{\text {TM }}$	VisualMax ${ }^{\text {TM }}$
FlashWriter ${ }^{\text {® }}$	（ ${ }^{\text {d }}$	5 SYSTEM ${ }_{\text {G }}$	

＊EZSWITCH ${ }^{\text {TM }}$ and FlashWriter ${ }^{\circledR}$ are trademarks of System General Corporation，used under license by Fairchild Semiconductor．

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY，FUNCTION，OR DESIGN．FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN；NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS，NOR THE RIGHTS OF OTHERS．THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD＇S WORLDWIDE TERMS AND CONDITIONS，SPECIFICALLY THE WARRANTY THEREIN， WHICH COVERS THESE PRODUCTS．

LIFE SUPPORT POLICY

FAIRCHILD＇S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION．

As used herein：

1．Life support devices or systems are devices or systems which，（a）are intended for surgical implant into the body or（b）support or sustain life， and（c）whose failure to perform when properly used in accordance with instructions for use provided in the labeling，can be reasonably expected to result in a significant injury of the user．

2．A critical component in any component of a life support，device，or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system，or to affect its safety or effectiveness．

ANTI－COUNTERFEITING POLICY

Fairchild Semiconductor Corporation＇s Anti－Counterfeiting Policy．Fairchild＇s Anti－Counterfeiting Policy is also stated on our external website，waw．fairchildsemi．com， under Sales Support．
Counterfeiting of semiconductor parts is a growing problem in the industry．All manufacturers of semiconductor products are experiencing counterfeiting of their parts． Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation，substandard performance，failed applications， and increased cost of production and manufacturing delays．Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts．Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above．Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts，have full traceability，meet Fairchild＇s quality standards for handling and storage and provide access to Fairchild＇s full range of up－to－date technical and product information． Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address any warranty issues that may arise．Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources．Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors．

PRODUCT STATUS DEFINITIONS
Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative／In Design	Datasheet contains the design specifications for product development．Specifications may change in any manner without notice．
Preliminary	First Production	Datasheet contains preliminary data；supplementary data will be published at a later date．Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design．
No Identification Needed	Full Production	Datasheet contains final specifications．Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design．
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor．The datasheet is for reference information only．

